[image: image1.jpg]TXTSTREAM

TxTStream XML/JSON over HTTP API

2Document change history

3Accessing the API

4Description

4About using JSON

5Sending messages to a mobile via the TSAPI

7Typical result for message request

10Responses indicating errors in the request

12Getting the status of a message and replies

16Retrieving opted out mobiles

18Error codes

19Message processing and transmit delay

19Duplicates and fault tolerance

19Excessive polling

Document change history

	When
	Version
	Why

	21-Feb-08
	1.0 Draft
	Draft

	26-May-08
	1.1
	Errata

	16-Mar-09
	1.2
	Clarify access API’s

	27-Jan-10
	1.3
	Duplicates, message delay

	11-Jun-10
	1.4
	Bad reply address check

	15-Jul-11
	1.5
	Add GlobalMessageText item

	26-Nov-12
	1.6
	Add description for statusall GetStatus

	13-Dec-12
	1.7
	Server choice

	09-Dec-18
	1.8
	Servers, Extensions, add JSON support

	17-Dec-18
	1.9
	Document optout support

	22-Dec-18
	2.0
	Release version

This document describes the operation of the TxTStream API via XML/JSON over HTTP.

Accessing the API

For HTTPS only access :

https://sec.txtstream.co.nz/tsapi
Should there be issues accessing sec.txtstream.co.nz, use :

https://pri.txtstream.co.nz/tsapi
--

Otherwise, if HTTP suits your operation equally as well use :
http://tri.txtstream.co.nz/tsapi
which will give better response times, and as a backup, use :

http://sec.txtstream.co.nz/tsapi
Description

The TxTStream API, known as TSAPI, allows you to transmit SMS messages to a mobile and then enquire on the message delivery status and retrieve any reply text.

The TSAPI contains basically three functions. To submit single or multiple messages you use a <request>. The request XML/JSON allows you to specify where any replies are forwarded to and how to identify to the message recipient where the message came from.

The <getstatus> request allows you to retrieve the status of a message and any reply text using elements to define the type of search. One of the <getstatus> options allows you to do an incremental retrieve i.e. get only message statuses/replies that have been updated since the last enquiry. This is definitely the recommended option.
You can use the <optouts> function to get a list of mobiles that have replied STOP to any messages, from the beginning of time, or from a specific date. Obviously, to save overhead, it is best to get a list up to the current date and then submit that date incrementally to get any new optouts.

Request XML/JSON is contained in the HTTP request body, the content-type for the request should be set as application/xml or application/json.

Standard TxTStream delivery status and opt-out reporting applies to the TSAPI meaning that the reply email address will receive batched non-delivery status reports or any opt-out notification emails.

About using JSON

The TSAPI supports JSON. For any incoming content, we inspect the first non-whitespace character and if it’s a <, assume XML, otherwise if it’s a { or [, we’ll assume JSON.

If neither case is true, the reply will be an XML error.

The TSAPI natively works with XML, so throughout the doc, entities are shown as XML entities. Examples show both XML and JSON.

We use NewtonSoft.JSON libraries to convert between XML and JSON and vice-versa.

Sending messages to a mobile via the TSAPI

The following XML and JSON demonstrates how to send a message (a lot of these elements are optional, see below) :

<?xml version="1.0" encoding="UTF-8" ?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>
 <globalmessagetext>An optional global message that will apply to all recipients below unless overridden by recipient messagetext item</globalmessagetext>

 </header>
<request>
<message>
 <messageid>2019020080222174900</messageid>

 <mobile>021999999</mobile>

 <toname>mark</toname>

 <fromname>MyName</fromname>
 <replyaddress>xx@xx.co.nz </replyaddress>

 <messagetext>Hey, is my request working?</messagetext>

 </message>
 </request>
 </messagerequest>
{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass",

"globalmessagetext": "An optional global message that will apply to all recipients below unless overridden by recipient messagetext item"

},

"request": {

"message": {

"messageid": "2000520080222174900",

"mobile": "021999999",

"toname": "mark",

"fromname": "MyName",

"replyaddress": "xx@xx.com",

"messagetext": "Hey, is my request working"

}

}

}

}
The account and password are always required. For security checking purposes, the <account> element MUST always precede the <password> element in the XML/JSON.

GlobalMessageText – optional. This item enables you to supply a default message text for all message recipients where the messagetext item for each individual recipient is not present or empty. If the text message is going to be the same for each recipient, then specifying the globaltextmessage item leads to smaller and faster XML/JSON transfers and thus eliminates large files and possible transmission timeouts. Any messagetext item specified for an individual recipient will override any globalmessagetext item. See restrictions and considerations detailed in the messagetext item below.
MessageId – Not required. You may either allocate your own message Id or leave this element out in which case a message Id will be allocated. If the message Id already exists on the server, a new message Id will be allocated. Have a look at the resulting XML/JSON from the above request, below, to see how this is indicated. Best practice is to allocate unique Id to each message in the request, less than 50 characters and preceded by the account e.g. 20005 and then maybe date, time and a counter e.g. 200052019022715300201.

Mobile – Required and must pass certain criteria such as the prefix and length. The allocated international number will be returned in the result in the <internationalmobile> element. This <internationalmobile> number will also be the number that appears in the GetStatus request. It may be stripped of the leading + sign by some carriers.

ToName – Not required. If a reply from a handset is processed, this ToName will be used on the email that is subsequently sent. If not provided it will default to ‘Unknown’.

ReplyAddress – Not required. Any replies from the handset will be forwarded to this email address also using the ToName above. If you do not wish to receive replies, set this to null@sms.txtstream.co.nz or some other null email address. Be aware that if you do use a null email address, opt-out and delivery status email notifications cannot be sent.

FromName – Not required. When a message is delivered to a handset it is delivered in the form of <FromName>:<MessageText>. This allows the recipient to easily identify who the message is from. So as not to take up too much message space it should be kept as short as possible. If you do not want a FromName and colon, omit this element. Be aware that a from name is recommended in that identifying who the text is from can be a legal requirement, in some circumstances, of the telecommunications act.

MessageText – Required unless a globalmessagetext item has been supplied. The text of the message. It must be 160 characters minus the length of the FromName and a colon to form a single SMS text. However, you may submit up to 459 characters (including the <fromname> and a colon, if <fromname> is used.
Each 160 character block is charged as one message. If the message text can at all be construed as promotional in nature, it is mandatory that it be suffixed with an opt-out clause i.e. “reply STOP 2 optout” (or similar).
You may submit as many <message></message> blocks i.e. individual message requests, as you wish in each request.

The total submitted message request cannot exceed 1 GB including transport overhead.

Typical result for message request

The TSAPI would return the following result from the request above :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:03:52+13:00</responsetime>

 <account>20005</account>

 </header>
<messagerequestresults>
<messagerequest>

<requestedid>2000520080222174900</requestedid>

<messageid>2000520080222174900</messageid>

<mobile>021999999</mobile>

 <internationalmobile>+6421999999</internationalmobile>

 <transmitstatus>OK</transmitstatus>

 </messagerequest>
 </messagerequestresults>
 </response>
{

"response": {

"header": {

"responsetime": "2019-02-21T10:57:22+07:00",

"account": "20005"

},

"messagerequestresults": {

"messagerequest": {

"requestedid": "2000520080222174900",

"messageid": "2000520080222174900",

"mobile": "021999999",

"internationalmobile": "+6421999999",

"transmitstatus": "OK"

}

}

}

}

Note that the transmit status only confirms that the message was accepted for delivery. You must request a GetStatus for the actual message delivery or reply status. Please see below.

The transmit status will almost always be OK. If it is anything else it indicates an internal error in the TSAPI.

If we were to submit the same identical request again, after the SMS had been sent, we would get :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:07:34+13:00</responsetime>

 <account>20005</account>

 </header>
<messagerequestresults>
<messagerequest>
 <requestedid>20005200802221749001</requestedid>

 <messageid>6146DC0E8AE74030B4300438A4F1DF9E</messageid>

 <mobile>021999999</mobile>

 <internationalmobile>+6421999999</internationalmobile>

 <transmitstatus>OK</transmitstatus>

 </messagerequest>
 </messagerequestresults>
 </response>
{

"response": {

"header": {

"responsetime": "2018-12-09T10:57:22+07:00",

"account": "20005"

},

"messagerequestresults": {

"messagerequest": {

"requestedid": "2000520080222174900",

"messageid": "6146DC0E8AE74030B4300438A4F1DF9E",

"mobile": "021999999",

"internationalmobile": "+6421999999",

"transmitstatus": "OK"

}

}

}

}

Note the new response in the <requestedid> and <messageid> elements. If a request specifies a <messageid> that already exists, after an SMS has been created and sent (possibly a matter of minutes after a request is made depending on the current queue), a new one will be allocated. If a request specifies a <messageid> that is blank, or omitted altogether, one is provided.

A very important note however regarding duplicates and we explain this further below. The TSAPI does not allow the same message to be sent to the same mobile regardless of the <messageid>, within a 24 hour period. Though you will receive an OK response, the message will be silently ignored.

The second point here is that the check for duplicate <messageid>’s is done against sent messages not queued and yet to be sent. This behaviour is by design and allows you to create a batch. However, we strongly recommend that a <messageid> is provided and that they are unique, or you omit the <messageid> element altogether if it serves no useful purpose in your app.
Now, let’s look at the simplest request possible and the response :

<?xml version="1.0" encoding="UTF-8"?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>

 </header>
<request>
<message>

 <mobile>021999999</mobile>

 <messagetext>Test API</messagetext>

 </message>
 </request>
 </messagerequest>
{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass"

},

"request": {

"message": {

"mobile": "021999999",

"messagetext": "Test API"

}

}

}

}
And the response :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:12:34+13:00</responsetime>

 <account>20005</account>

 </header>
<messagerequestresults>
<messagerequest>
 <requestedid>054C9D14D7014890825C98ECD806FFE5</requestedid> <messageid>054C9D14D7014890825C98ECD806FFE5</messageid>

 <mobile>021999999</mobile>

 <internationalmobile>+6421999999</internationalmobile>

 <transmitstatus>OK</transmitstatus>

 </messagerequest>
 </messagerequestresults>
 </response>

{

"response": {

"header": {

"responsetime": "2019-02-21T20:12:34+13:00",

"account": "20005"

},

"messagerequestresults": {

"messagerequest": {

"requestedid": "054C9D14D7014890825C98ECD806FFE5",

"messageid": "054C9D14D7014890825C98ECD806FFE5",

"mobile": "021999999",

"internationalmobile": "+6421999999",

"transmitstatus": "OK"

}

}

}

}

Responses indicating errors in the request

Let’s look at a response with errors. If we change the phone number of our request to just 21, we receive this response :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:17:39+13:00</responsetime>

 <account>20005</account>

 </header>
<messagerequestresults>
<messagerequest>

<requestedid>054C9D14D7014890825C98ECD806FFE5</requestedid>
<messageid>BE76150C06A14BE3ADDC27CC3020A419</messageid>

 <mobile>21</mobile>

 <errors>
<error>
 <errortype>mobile</errortype>

 <code>-5</code>

 <info>The phone number is too short (8)</info>

 </error>
 </errors>
 </messagerequest>
 </messagerequestresults>
 <errorcount>1</errorcount>

 </response>

{

"response": {

"header": {

"responsetime": "2019-02-21T20:17:39+13:00",

"account": "20005"

},

"messagerequestresults": {

"messagerequest": {

"requestedid": "054C9D14D7014890825C98ECD806FFE5",

"messageid": "BE76150C06A14BE3ADDC27CC3020A419",

"mobile": "21",

"errors": {

"error": {

"errortype": "mobile",

"code": "-5",

"info": "The phone number is too short (8)"

}

}

}

},

"errorcount": "1"

}

}

If any errors are detected in the request, each <messagerequest> will contain an <errors> element listing the errors. The types and codes are listed at the end of this document. The <errors> element may contain more than one <error> element if multiple errors were detected.

Also note that if any errors are detected, the global <errorcount> element will be returned allowing an easy check.

However be aware that other errors that are considered global may also be returned, for instance, an invalid username or password. In this case you will receive :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:22:10+13:00</responsetime>

 <account>2000x</account>

 </header>
<error>
 <code>-3</code>

 <info>Invalid account or password</info>

 </error>
 </response>

{

"response": {

"header": {

"responsetime": "2019-02-21T20:22:10+13:00",

"account": "2000x"

},

"error": {

"code": "-3",

"info": "Invalid account or password"

}

}

}

In a response of this type, no message processing will have taken place and the entire request will need to be submitted again.
Getting the status of a message and replies

There are three forms of status request :

<?xml version="1.0" encoding="UTF-8" ?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>

 </header>
<getstatus>
 <statusall>2019-02-21T16:00:00+13:00</statusall>

 </getstatus>
 </messagerequest>

{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass"

},

"getstatus": {

"statusall": "2019-02-21T16:00:00+13:00"

}

}

}
and

<?xml version="1.0" encoding="UTF-8" ?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>

 </header>
<getstatus>
 <all>2019-02-21T16:00:00+13:00</all>

 </getstatus>
 </messagerequest>

{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass"

},

"getstatus": {

"all": "2019-02-21T16:00:00+13:00"

}

}

}
and

<?xml version="1.0" encoding="UTF-8" ?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>

 </header>
<getstatus>
 <messageid>2000520080222174900</messageid>

 <messageid>C653603E539847AB9A405DE941A439DF</messageid>

 </getstatus>
 </messagerequest>

{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass"

},

"getstatus": {

"messageid": ["2000520080222174900", "C653603E539847AB9A405DE941A439DF"]

}

}

}

The three forms work like this :

· statusall – Return results where the message status has changed since the date/time specified i.e. a delivery status change or a reply. This is by far the most efficient option and the one we would recommend. Using this method allows you to get all the incremental changes from a particular date/time while using the minimum of resources
· all – Return results for all messages submitted since the time specified. Not efficient and not recommended
· messageid – Return results for the messageid’s specified, remembering that this was the returned element <messageid>, not necessarily the Message Id you requested. The least efficient method and not recommended
In the first and second forms where the <all> or <statusall> element is used, several points need to be noted. If the date is omitted, then last midnight is assumed e.g. if the date were 20 Mar, 2019 at 16:00, then only statuses (<statusall>) or requests (<all>) later than 20 mar, 2019 at 00:00:00 will be available. If the date is invalid, the same rule applies.

Otherwise, the third form allows you to retrieve statuses and replies by specific message Id. As many Id’s as you wish may be included in the request. The Id must refer to the actual message Id returned in a request, even if the requested id was overridden by the system in a request due to an omitted or duplicate Id.

Let’s look at a response (same for all forms) :

<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:59:11+13:00</responsetime>

 <account>20005</account>

 </header>
<statusrequest>
<messagestatus>
 <id>C653603E539847AB9A405DE941A439DF</id>

 <status>REPLY</status>

 <reply>Ok</reply>

 <laststatusupdate>2019-02-21T19:00:26+13:00</laststatusupdate>

 <mobile>+6421999999</mobile>

 <toname>mark jenks</toname>

 </messagestatus>
<messagestatus>
 <id>2000520080222174900</id>

 <status>RCV</status>

 <laststatusupdate>2008-02-21T18:09:20+13:00</laststatusupdate>

 <mobile>+6421999999</mobile>

 <toname>mark jenks</toname>

 </messagestatus>
 </statusrequest>
 </response>

{

"response": {

"header": {

"responsetime": "2019-02-21T20:59:11+13:00",

"account": "20005"

},

"statusrequest": {

"messagestatus": [{

"id": "C653603E539847AB9A405DE941A439DF",

"status": "REPLY",

"reply": "Ok",

"laststatusupdate": "2019-02-21T19:00:26+13:00",

"mobile": "+6421999999",

"toname": "mark jenks"

}, {

"id": "2000520080222174900",

"status": "RCV",

"laststatusupdate": "2008-02-21T18:09:20+13:00",

"mobile": "+6421999999",

"toname": "mark jenks"

}]

}

}

}

Multiple <messagestatus> elements may be returned depending on the request.

If the <status> element indicates that a handset has replied (the status is REPLY), the <reply> element will be present.

The possible values for the <status> element are :

	Value
	Description

	SNT
	The telco has received the message, it is in process but no further updates as to its status are available

	RCV
	The message is confirmed as received by the handset

	EXP
	The message could not be delivered and will not be retried by the telco as the expiry period has elapsed. Not all telcos will return an expiry status. If they do, typically messages are expired after 24-72

	NUR
	Number unreachable, the number is invalid, stolen or no longer exists

	REPLY
	The message was delivered and has been replied to. The <reply> element will contain the reply text. Note that if multiple replies have been sent, only the last reply is available

	Unknown
	The message is unknown to the TSAPI. Note that if you request the status via a specific <getstatus><messageid> request prior to six minutes after the message request, you will receive an unknown status

	Error-retry
	The message could not be delivered on the first attempt to the telco. However, it will be retried. In this case the <retries> element will indicate how many retries have been attempted. Typically, four retries are attempted at varying intervals over an hour

Retrieving opted out mobiles

You can retrieve opt-out information from the TSAPI from either the beginning of time or from a supplied date. We recommend that if you are retrieving optouts, you retrieve the entire list to date once and then submit an incremental date :

<?xml version="1.0" encoding="UTF-8" ?>

<messagerequest>
<header>
 <account>20005</account>

 <password>tpass</password>

 </header>
<optouts>
 <startdate>2019-02-21T16:00:00+13:00</startdate>

 </optouts>
 </messagerequest>

{

"messagerequest": {

"header": {

"account": "20005",

"password": "tpass"

},

"optouts": {

"startdate": "2019-02-21T16:00:00+13:00"

}

}

}
Simply omit the <startdate> element from the request for all optouts. The response is :
<?xml version="1.0" ?>

<response>
<header>
 <responsetime>2019-02-21T20:59:11+13:00</responsetime>

 <account>20005</account>

 </header>
<optouts>
<optout>
 <mobile>6421999999</mobile>

 <created>2018-06-01T15:03:32+13:00</created>

 </optout>
<optout>
 <mobile>6421999991</mobile>

 <created>2018-07-02T10:03:32+13:00</created>

 </optout>
 </optouts>
 </response>

{

"response": {

"header": {

"responsetime": "2019-02-21T20:59:11+13:00",

"account": "20005"

},

"optouts": {

"optout": [{

"mobile": "6421999999",

"created": "2018-07-02T10:03:32+13:00"

}, {

“mobile": "6421999991",

"created": "2018-06-01T15:03:32+13:00"

}]

}

}

}

Error codes

All <messagerequest> errors are reported by a type, a code and additional info. All global errors are reported by a code and additional info. The possible error list is contained in the table below. Any positive error codes mean an internal processing error and are not covered here :

	Global/Message
	Code
	Description

	Global
	-1
	There was no XML/JSON in the body

	Global
	-2
	There was an error in the form of the XML/JSON. The <info> element will pinpoint what

	Global
	-3
	The account and/or password are wrong

	Global
	-4
	Invalid or missing request type, must be a <message> or a <getstatus>

	Message
	-5
	The mobile number is bad, see <info> for details

	Message
	-6
	No <messagetext> has been supplied and no <globalmessagetext> supplied

	Message
	-7
	TransmitStatus, there was an error submitting the request for subsequent transmission to the telco, see <info> for details

	Message
	-8
	The reply email address was supplied but is badly formed

Message processing and transmit delay

The TSAPI uses a throttling and caching mechanism shared along with other TxTStream message access methods. Thus it is important to realise that there are a few minutes delay after a message is submitted before it is actually processed to the mobile. We recommend waiting six minutes after submission prior to testing for a status.

Duplicates and fault tolerance

An important feature of the TSAPI is its ability to recognise and ignore any duplicate messages.

A duplicate is considered to be the same message sent from the same account with the same mobile number and the same destination name with the same message body text to the same URL in the same 24 hour period pertaining to the time the first request was processed.

In the case of a duplicate message, it will be silently ignored i.e. you will receive a <transmitstatus> back the same as if it had been processed, but no message processing will take place.

Thus, in the case where a large multi message request is processed, but perhaps the requester times out prior to seeing the response, it is possible to resubmit the request in its entirety without the risk of sending duplicate or multiple messages.

Excessive polling

Excessive polling of the TSAPI for GetStatus requests harms the performance of our servers, and probably your own. It is recommended that you poll once, six minutes after submitting a message, and at 10 minute intervals after that.

The most efficient method is to simply use incremental calls via <getstatus><statusall> supplying the most recent date/time. This will ensure that any updates to any messages regardless of request time will be returned.

The six minute delay will be enough time for the message to reach the handset and for the status to be updated. Polling the status of the same message (or a <getstatus<all>, or multiple <messageid>’s) more than once in a 60 second period is considered excessive.

The TSAPI monitors polling requests and if any host is found to be polling excessively, a HTTP status of 401, Forbidden will be returned for the request. The request will not be considered for processing again until at least 60 seconds have elapsed.

Page 15 of 15

